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Abstract 

Let s be a generalised logic (orthocomplemented weakly modular a-lattice) and 5 ~ the 
set of all states (probability measures) on it, endowed with the most important metric 
physically. It is proved here that there exists a real Banach space X which contains 50 
as a closed convex subset, whose norm induces the metric of 50 and such that the linear 
envelope of 5" is dense in X. Also, Xis an ordered topological vector space with a normal 
positive cone having a nonempty interior. Finally, we prove that every convex auto- 
morphism of 50 can be extended uniquely to a continuous unit normed linear one-one 
operator on X onto itself. 

1. Introduction 

Extensions of  several fundamental results in quantum mechanics to the 
more general theory, where the logic ~ is an orthocomplemented weakly 
modular a-lattice, have been lacking for some time. Rigorous investigations 
connected with particles, symmetries and scattering theory, for example 
are difficult to handle in this generalised formalism and further mathe- 
matical developments are, therefore, necessary. These are problems related 
to the group of convex automorphisms of  the set of  states 5O, consisting 
of all the probability measures on No, and also to the structure of  5 ~ The 
difficulties do not present themselves in the special case of  quantum theory. 

Quantum logic ~oq is much more restricted than the generalised one 
above. It satisfies extra condkions such as separability, atomicity and 
completeness. By Piron's theorem (Piron, 1964; Varadarajan, 1968, p. 184), 
~ o  is isomorphic to the lattice of  all the projection operators of a separable 
Hilbert space ~ over the reals, the complex numbers or the q"aaternions. 
The case of  complex Hilbert space is always assumed. By Gleason's 
theorem (Gleason, 1957), the set 5oq of quantum states is isomorphic to 
the convex set of  yon Neumann operators of  unit trace on ~ .  Thus ~ q  
and 5O~ are intimately related in conventional quantum theory. A symmetry 
operation in the generalised theory (~qo, 5O) induces a convex antomorphism 
on 5O. In the quantum case this becomes a unitary or antiunitary operator 
on ~ '  and subsequently the problems mentioned above become manageable 
(Jauch, 1968; Varadarajan, 1968). 
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Here this situation is remedied for the generatised formalism in a manner 
having certain similarities with the quantum case and such that subsequently 
full use of  analysis can be taken advantage of. Motivated by the requirement 
of  endowing 5# with an especially important metric topology we prove 
that there exists a real Banach space X including 5 a as a closed convex 
subset, whose norm induces the metric of  5 a and such that the linear span 
of .9~ is dense in X. This is the first main theorem. Its proof  depends on 
some elementary lemmas on signed measures on 50. Their properties turn 
out to be somewhat different from those over (r-algebras because of the in 
general nondistributive nature of  the logic. The final theorem deals with 
the convex automorphisms of 5:.  Such an automorphism is shown to be 
extendable uniquely to a continuous unit-normed one-one linear operator 
on X onto itself which is an isometry on ~ .  The proof  of the continuity 
part  depends on an important property of  X, namely that it is an ordered 
topological vector space having a normal t  positive cone with nonempty 
interior. This is the content of  another theorem. 

The Banach space X (of the generalised states) plays now a role similar 
to that of Jr in the quantum case. The similarities between the corre- 
sponding representation theorems of the group of convex automorphisms 
of  5 :  are also obvious. Applications can now be carried out. For abstract 
scattering theory see Kronfti (1 969). 

2. Functions on Logics 

This section contains some properties of  functions and measures on 5 ~ . 
Standard lattice theoretic notation will be employed. Two elements a and 
b of  an orthocomplemented lattice L are said to be compatible, written 
a +-+ b, if there exists a Boolean subalgebra of  L containing a and b. The 
lattice L is weakly modular if the relation a < b implies a ~-+ b. From now on 
50 denotes an orthocomplemented weakly modular o-complete lattice, 
called generalised logic. 

Definition 2.1 

A eountably additive function on 50 is a real-valued function p on 50 
such that for any disjoint sequence (a,) in 50 

p(V a,,) = ~ p(a.) 
n n 

The function p is (finitely) additive if the above equation holds for any 
finite disjoint subset of 50. The function p is a signed measure if 

(i)  - o ~  < p ( a )  < ~ (a ~ 50) ,  
(it) p ( ~ )  = 0, 

(iii) p is countably additive. 

t Definition of a normal cone is given in Section 4. 
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A proper state or probability measure on A ~ is a nonnegat ive  measure  p 
with p(I)  = 1. The set of  all p roper  states will be denoted  by 5 ~ 

The  fol lowing lemmas are required in la ter  sections. 

L e m m a  2.2 

(i) I f  a, b E ~L~ then a ~-~ b i f  and only i f  a +-+ b • (ii) I f  x e ~q ~ and(a , )  
a sequence in ~ with x ~-+ a,,for all n, then 

x v A a,, = A x v a,, and  x A V a,, = V x A a,  
n n 11 n 

Proof: Elementary.  

Lemma 2.3 

Let  p be an additive function on 5 f  , x, y e 5 f  and x < y. Then 

p (y )  - p(x)  = p ( y  A x • 

I f  p is also nonnegative then it is monotone. 

Proof: Let  c = y A  x • Then c _[_ x. Also x~-~y and hence by L e m m a  2.2 
using the fact x < y, 

xv c = ( x v y ) ^  (xv x l ) = y  

The first result  follows by the addi t iv i ty  o fp .  If, fur thermore ,  p >/0 on 5r 
then p(y )  >~ p(x)  and hence monotone .  [] 

Definition 2.4 

The upper and  lower variations at a ~ ~o o f  any real funct ion p on ~q 
are defined by  

i f ( a )  = sup {•  x < a) 

respectively. Its (total) variation is the funct ion 

[p[(a) =p+(a )  + p-(a)  (a ~ ~q~) 

Lemma 2.5 

Let  p be an additive function on ~ .  Then 

(i) p = p + - p - ,  
(ii) p+ and ]p[ are monotone. 

Proof: Let  x, a ~ ~ and x < a. Then by (Lemma 2.3) 

p ( x )  - p ( a )  - p ( a  ^ x ~ ) 
Hence 

p+(a) = p(a) + sup {-p(a  A x Z ) : x < a} 
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Part (i) is proved if we show that La = {x: x < a} and La = {a ^ x • : x < a} 
are equal. Since a ^  x • < a then L, '  e L , .  Conversely, let y eL~, then 
y < a. This can be written as y = a ^ x • where x = a A yZ < a, implying 
y e La' or L,  c La'. Thus L,  = L~' proving (i). 

Now let a < b. Then 

{:kp(x):x < a} c {•  < b} 

or p+(a)<p-+(b). Thus p+- and hence Ip[ =p+ + p -  are all monotone, 
proving (ii). �9 

Remarks 

Part (i) of  the above Lemma corresponds to the Jordan decomposition 
and of course also holds for signed measures. I f p  is a signed measure on 

then in general p-+ and Ipl are not measures. In fact a concrete example 
could be constructed where p+- are not even additive.'~ For  a or-algebra all 
three are in fact measures and the reason for this not being so on ~ is 
that in general ~qa need not be distributive. This is unfortunate, for otherwise 
we will be able to show that span (5  a) is precisely the set of  all signed 
measures on 5 r  great simplification if true. However, as mentioned 
above, this is not the case. 

3. The Banach Space of  States 

Most problems of interest to generalised quantum theory require an 
appropriate topology on 5 a. The most suitable one physically is the metric 
topology introduced in the following. 

Lemma 3.1 

The real-valued function p on 5r x 5 a defined by 

p(p,q) = suP{Ip(a) - q ( a ) l : a  e 5e} 

is a metric on 5 P, called the 'natural metric'. 

(p, q e S a) 

Proof: Elementary since 5 # consists of bounded functions. [] 

The following is the first main result of  this work. 

Theorem 3.2 

The set X1 of  all signed measures on ~ with finite variations is a real 
Banach space with the norm 

IlplI = Ipl(/) (p e X,) 

Furthermore, SP is a closed convex subset of  (X1, I1" Ik) with the norm above 
inducing the natural metric p. 

I" A. M. t31eason, private communication. 
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Proof: I t  is obvious that  XI is a real linear space. Also f rom the definition 
of  var ia t ion in Definition 2.4 

Jlp +qll  < [lpl[ + Ilqll 
II pH = "[]pll 

for  a l lp ,  q ~ X~ and ~ E R. By L e m m a  2.5 for  a n y p  ~ )(1 and a ~ ~q~, 

[P(a)I = I f ( a )  -P-(a)t < IpI(a) < [Pl(I) = flP[l 

Thus IIp][ = 0 only i f p  = 0, and so [I'll is a norm.  
N o w  let (p,)  be a Cauchy sequence in (X1, H.lr). Then for any a ~ 

Ip~(a)-pm(a)[ ~< [ (pn-pm)](a)  

< HP, -PmH 

and so (p~(a)) is a real Cauchy sequence which is, therefore, convergent  to 
p(a) say. Let (bi) be a disjoint sequence in ~ with b = V~ bi. Then 

~, p(b~) = lim Z p~(b~) = l imp,(b)  = p(b) 
i n i n 

Thus (p,) converges to the signed measure p. Similarly we can prove that  
([p,l(a)) is a real Cauchy sequence and hence convergent.  Therefore,  
(p,)  converges to p in X~. Thus ):1 is a Banach space. 

Obviously 5 ~ is a convex subset o f  X~. Also for  a n y p  ~ 5 ~ p ~> 0 giving 
]Pi = P  = P +  and p - =  0. The natural  metric can, therefore, be writ ten as 

p(P,q)=sup{[[[pl(a)-lql(a)][:a~ ~ }  (p,q~ so) 

Also f rom L e m m a  2.5, the variat ion of  a signed measure  is mono tone  and 
hence 

I]rl]=sup{[r](a):a~ S}=p(r,O) (r~ X1) 
This gives 

[ I P -  q [] = P(P - q, O) ~ p(p, q) 

Thus the no rm [I'll induces the natural  metric p on 5O. To complete the 
p r o o f  it remains to show that  5O is closed. Let  (pn) be any sequence in ,90 
converging to p in X~. I t  is enough to show that  p ~ 5O. Since p ,  ~ 9~ for  
each n, then 

p,,(1) = 1 = Ip.[(1) = llp~ll 
Thus 

or  

[[1 - I p l q ) l l  = [ [ [ p , l ( I ) -  [pl(Z)]l 
< Irp. -p l l  ~ 0 (n ~ ~ )  

[p[(/) : 1 = r]pll 

Fur thermore ,  Pn ~ 5O implying that  pn-  = 0 and so for  any  a ~ ~ ,  noting 
that  p -  is monotone ,  

p-(a) = [p~-(a) -p-(a)] <~ lip,, -plJ ~ 0 (n --~ ~) 
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giving p -  = 0. Hence for any a E ~4' 

0 <.p+(a) = p ( a )  = Ipl(a) < Ilplh = 1 

orp(I)  = 1 implying thatp E 50. The proof  of the theorem is now complete. �9 

Definition 3.3 

From now on E will denote the linear span of 50 over the reals and X 
the closure of E in (Xl, II" ll). Since X is a closed subspace of Xl then it is 
itself a Banach space with norm II" II. We call X the Banaeh space of states 
on ~.qo. Any p s X is called a generalised state and any p e 50 a proper state. 

Corollary 3.4 

There exists a real Banaeh space (X, II" II) including 50 as a closed convex 
subset whose norm induces the natural metric and such that span (5  ~ ) is 
dense in X. 

Note that a generalised state p not in 50 need not have any physical 
significance. The reason for the name given to X is due to the similar role 
it plays to the Hilbert space of states in the quantum case. 

4. The Convex Automorphisms of the Set of States 

This section is devoted to the representation theory of the group of 
convex automorphisms of 8" in terms of certain linear operators on X. 
Their importance is due to the fact that they contain the symmetry opera- 
tions as well as the dynamical group of the system. 

Definition 4.1 

A convex automorphism of 50 is a one-one mapping A :p --~ Ap of 50 
onto itself such that for any sequence (c.) of nonnegative numbers with 

cn = 1 and any sequence (p.) in 50. 
n 

A ~ c ,p ,= ~ e, Ap, 
n n 

These maps form a group denoted by Aut(50). 
The proof of the representation theorem of Aut(50) depends on an 

important property of the linear span E of 50, namely that E is an ordered 
topological vector space with a generating normal positive cone with 
non-empty interior. NormaBty of the positive cone C of E means that there 
exists a neighbourhood basis of 0 for the topology of E consisting of sets 
F such that F =  ( F +  C) N ( F -  C). Implications of this ordering structure 
required in the sequel are contained in the following. 
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Theorem 4.2 

With the partial ordering p < q for p, q ~ X whenever p(a) < q(a) for all 
a ~ ~o q~, X i san  orderedBanach space with apositive cone C = {p E X:p >1 0}. 
Furthermore, C is closed, normal and has nonempty interior. 

Proof'. Clearly X is ordered by C. For any p, q E X and 0 < p  < q  using 
Lemma 2.5, 

Jpl(a)=p+(a)=p(a)<~q(a)=q+(a)= [q [(a) ( a ~ )  

implying that dJpll < tlq I/. This in turn implies that C is normal; see Peressini 
(1967, proposition (1.5) p. 63). 

Note also that 

C = {~ o~,P~:(oh) finite set of nonnegative numbers, (P,) C 50} 

and hence it is easy to prove that C is closed. Finally C is a closed subset 
of the complete normed space X and hence C is a complete metric space. 
By Baire's category theorem C is of second category. If  the interior C O of 
C was empty then C O = C O = ~ implying that C is of first category which 
is a contradiction. �9 

The following is the required representation theorem for Aut(50). 

Theorem 4.3 

Every A ~ Aut(50) can be extended uniquely to a continuous unit normed 
linear one-one operator .4 on X onto itself which is an isometry on C and such 
that 

(i) X - l  = A - l .  

Proof'. We extend A by linearity to the linear span E of 50 and denote this 
extension by the same symbol A. Now, since A(50)=  5 ~ then it is clear 
that A C c  C and, therefore, A is a positive linear operator on E -+ E. 
From Theorem 4.2, C is normal and C o # ~ and A is positive, therefore, 
A is continuous on E - +  E; see Peressini (1967, proposition (2.16) p. 86). 
Since E = C -  C, C is not dense in E and hence a nonzero positive con- 
tinuous map, such as A, always exists. 

Thus every A ~ Aut(50) is a continuous one-one linear map on E onto 
itself. Now A is a bounded linear transformation on the normed linear 
space (E, N" Jt) into the Banach space (X, 11. [I) and hence permits a closure 
.~ extending A to the whole of the closure E = X of E. Furthermore, ,~ is 
unique, continuous and such that lt-4Jt = llAII (Bachman & Narici, 1966, 
section 17.2). Result (i) follows trivially since A -1 ~ Aut(50). Because of  
(i) A is one-one onto with domain and range equal to X. 
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That  A is an isometry on C follows f rom the fact tha t  p e ~9 ~ implies 
HpIt = [ p [ ( I )  = 1 and also that  any r ~ C is o f  the fo rm ~t  elP~ where (e~) 
is a finite subset o f  [0, oo) and (p~) c 5 p. Thus 

o r  

Furthermore,  Api ~ St' and hence again IIArl[ = ~ ~ .  
Therefore, I[Arll = ttrkl (r s C), implying that  A and, therefore, .4 are 

isometries on C. Finally, IlA[[ = 1 follows trivially f rom the above. �9 
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